

Quality Management of site investigations

Lizzi Andersen & Christian Grøn, DHI – Water & Environment Mogens Wium, GEO Per Misser and Torben Wandal, Århus County

> Nordrocs 2006 Malmø, 20. – 21. septembe

Background

 All site investigations are associated with uncertainties

DHL

- The acceptable uncertainties depend upon:
- The objectives of the investigations &
- The risk associated with errors.
- The goal is a sufficient but not excessive investigation quality ("fitness for purpose").

Quality management

 To define the relevant quality ("fitness for purpose")

DHL

- To set up a plan for how this quality can be obtained
- To ensure that the quality aimed for is reached

Presentation

The presentation introduces:

 A methodology for evaluation of groundwater monitoring uncertainty

DHL

• A methodology to assess soil gas investigations

DHIZE

Groundwater case

- An important drinking water resource for the city of Arhus has been identified as at risk for deterioration of the quality due to intensive drinking water abstraction. A program is to be established in order to monitor the trend in water quality development.
- The methodology was developed to allow planning of groundwater monitoring and control with defined quality objectives
- The basic principles can be found in the guidelines for groundwater monitoring related to the EU groundwater directive (in preparation)

Specifics • Groundwater body: 2 km x 2 km x 10 m, starting 20-30 m below the surface. • Glacial outwash sand with Miocene sands and clays below and glacial till above • Several local aquifers and aquitards

- Natural quality of the groundwater is anaerobic with sulphate and reduced iron, without nitrate, hydrogen sulphide and methane
- Threat is oxygen intrusion as the result of the water abstraction and groundwater table draw down.

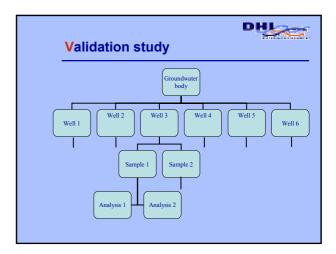
Investigation

- 9 wells sampled during surveillance monitoring
- 6 wells now available for sampling
- Aim: monitoring of one well twice per year
- Objective: 95% probability of recognising a 20% quality deterioration

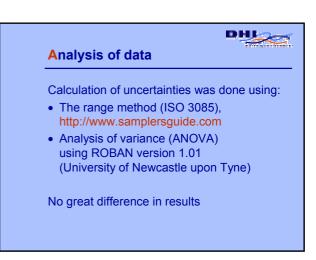
DHL

- Target parameter: Dissolved iron (sensitive to aquifer oxidation: decreasing iron with increasing oxidation
- Supporting evidence: redox potential
- Oon-line indicators of sampling stability: Oxygen, pH, electrical conductivity and redox potential
- General groundwater quality parameters: sodium, calcium and chloride
- Only the two key parameters, dissolved iron and redox potential are discussed here.

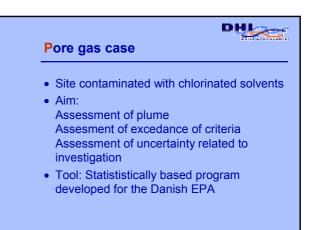
Key parameters, surveillance monitoring (9 wells)

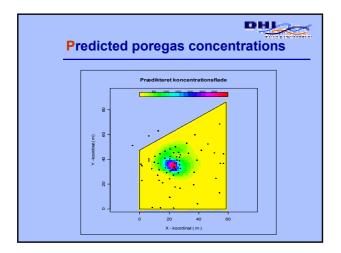

	Redox potential	Dissolved iron	
	mV	mg/L	
Mean	-123	1.11	
Relative standard deviation	27%	56%	
Main cause of uncertainty	Oxygen impact during sampling and on-line measurement	Filtering	

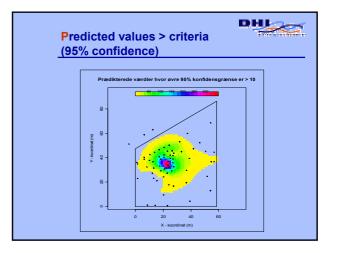

Data Quality Objects

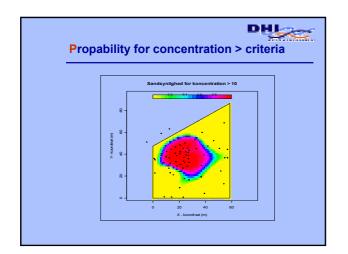

Meeting the monitoring objective requires:

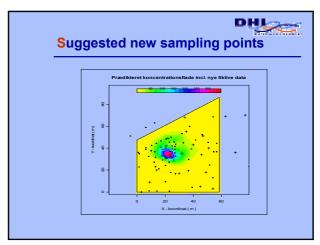
DHI


- A measurement uncertainty including both sampling and analysis of not more than 10% (comparison of two means each for two samples, 95% confidence interval, two sided test) corresponding to an expanded measurement uncertainty of 20%.
- Control of systematic errors through comparison of results








Results			100 C	
Validation				
	Analyses	Sampling	Between-target	
Redox potential	5.2 %	15 %	14 %	
Dissolved iron	2.1 %	10 %	35 %	
Quality con	trol Analyses	Sampling	Between-target	
	18 %	3.8 %	23 %	
Redox potential	18 %	0.0 /0		

Summary

 To be able to assess the quality of your decision on a contaminated site, you must set Data Quality Objectives

DHI

- To be able to do so, you must know something of the variability of the analysis the sampling and the heterogeniety: Use must have some data and they must be
- collected and anaysed in an appropriate fashionUncertainty is not the problem; it is not knowing the uncertainty or addressing the uncertainty that
 - the uncertainty or addressing the uncertainty that is the problem