Comparison of Leaching of PAHs from two Contaminated Soils under Varying Hydraulic Retention Time

Anja Enell, Therese Nilsson and Per Warfvinge

Department of Chemical Engineering Lund University

Background

- Hydraulic retention time, HRT, is an important parameter when conducting leaching experiments
- HRT = the contact time between the liquid and the solid phase

Objectives

- To investigate which processes control leaching of PAHs from aged contaminated soil
- To investigate if leached concentrations from field contaminated soil, obtained by dynamic column leaching, can reach equilibrium concentrations at very short contact times
- To demonstrate that leaching of PAHs from aged contaminated soils can show significant differences in leaching behaviour, leachable concentrations and available amounts

Soil samples

- 1. Husarviken, Stockholm, Sweden
 - former gasworks plant (1893-1972)
 coal tar, heavy metals, cyanide
 - coartar, neavy metals, cyamut

Holmsund, Umeå, Sweden

 former impregnation facility (1943-1983)
 creosote, As, Cu, Cr

Soil data

Parameters	Coal tar cont. soil	Creosote cont. soil	
TOC %	16		
pH water (1:10)	7.62	5.64	
Density kg/L (d.w.)	1.36	1.06	
Composition of soil	(%)		
Coarse sand (>0.2 mm)	54	62	
Fine sand (0.02-0.2 mm)	20	23	
Silt (0.002-0.02 mm)			
Clay (<0.002 mm)			

Initial amounts

РАН	Abbreviation	Coal tar cont. soil	Creosote cont. soil
		(mg/k	g soil)
Fluorene	FLU	7 ± 1	110 ± 12
Phenanthrene	PHE	61 ± 3	240 ± 43
Anthracene	ANT	60 ± 3	226 ± 101
Fluoranthene	FLU	221 ± 43	1066 ± 36
Pyrene	PYR	177 ± 34	521 ± 24
Pyrene	PYR	177 ± 34	521 ± 24

Design of the leaching experiment

Experimental set up

•Glassware and stainless steel

•Sterilization, HgCl₂

•0.7 µm filter

•0.5 kg soil

ダ島青

Experimental flow rates and HRTs

Husarviken (coal tar contaminated soil)

•Elevation difference of 38 m!

•Large proportion of medium to coarse material

High groundwater velocities

Experimental flow rates and HRTs

Flow rates chosen for the experiments: $0.1 - 0.5 \text{ L} \text{ h}^{-1}$ (Darcy velocities: $450 - 2200 \text{ m year}^{-1}$)

rate

osity

itν

$$HRT = \frac{m_{d.w.} \cdot \varepsilon}{Q \cdot \rho_{d.w.}} \qquad \begin{array}{c} Q &= \text{flow} \\ m_{d.w.} &= \text{amo} \\ \varepsilon &= \text{por} \\ \rho_{d.w.} &= \text{den} \end{array}$$

ount of sample material

HRTs, Husarviken

Husarviken, coal tar

HRT =0.3 h x 2 0.5 h x 2 1.0 h x 1

Leached concentrations, Husarviken

Leached concentrations, Husarviken

Interpretation of k_m

- k_m = mass transfer coefficient (h⁻¹)
- D = the diffusivity of the solute (cm² s⁻¹)
- A = the sorbent surface area (cm²)
- V = the pore water volume (cm³)
- δ = the distance of the mass transfer (cm)

Conclusion: The leaching is not a result of dissolution of PAHs from a free phase of coal tar!

Interpretation of k_m

 k_m = mass transfer coefficient (h⁻¹)

D = the diffusivity of the solute (cm² s⁻¹)

 δ = the distance of the mass transfer (cm)

A = the sorbent surface area (cm²)

V = the pore water volume (cm³)

D differ approx. 1.1 between the PAHs studied

Interpretation of k_m

 δ_{FLU}

- k_m = mass transfer coefficient (h⁻¹)
- D = the diffusivity of the solute (cm² s⁻¹)
- A = the sorbent surface area (cm²)
- V = the pore water volume (cm³)
- δ = the distance of the mass transfer (cm)

Conclusion: The leaching may be a result of mass transfer resistance within the solid phase!

HRTs, Holmsund

Holmsund, creosote

HRT =0.3 h x 1 0.5 h x 1 1.0 h x 1

Leached concentrations, Holmsund

Leachable	amounts
Louonabio	announto

PAH	Creosote cont. soil	Coal tar cont. soil	
	% leached of total amount		
Fluorene	77	1.84	
Phenanthrene	32	0.46	
Anthracene		0.64	
Fluoranthene		0.18	
Pvrene	4	0.16	

Solubility limitations?

PAH	Creosote cont. soil		
	C _{max}		
	(µg L ⁻¹)		
Fluorene	215 ± 14	440	
Phenanthrene	166 ± 8	870	
Anthracene	26 ± 2		
Fluoranthene	85 ± 4	68	
Pyrene	35 ± 2		

Conclusion: The leaching may be a result of dissolution of PAHs from a free phase of creosote!

Solubility limitations?

PAH -	Creosote cont. soil		Coal tar cont. soil	
	Cmax		Cmean	
	[µg L]]		[µg L ⁻¹]	
Fluorene	215	440	0.31	220
Phenanthrene	166	870	1.36	190
Anthracene	26		0.35	53
Fluoranthene	85	68	0.59	18
Pyrene	35	47	0.42	15

Conclusions

- The leaching from the creosote contaminated soil, collected from Holmsund, was probably governed by dissolution.
- Desorption processes most likely controlled the release of PAHs from the coal tar contaminated soil from Husarviken.
 -Leached concentrations of the heavier PAHs seemed to be close to distribution equilibrium concentrations, despite the rather short HRT
- Significant differences in leaching behaviour, leached concentrations and available amounts –although initial concentrations were similar and both samples were aged
- Leaching tests for organic contaminants can provide information for risk assessments!

T .