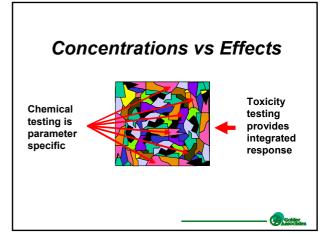
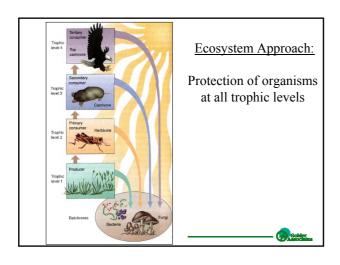
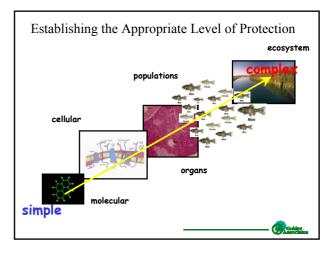
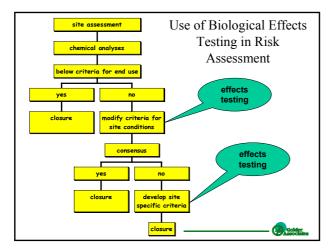
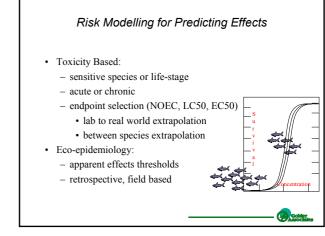

Outline

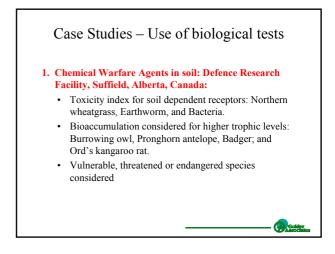

- Evolution of Risk-based Remediation in Canada
- Chemical Concentrations versus Eco-toxicological Effects
- Ecological Risk Assessment Approach
- Case study:
 - Chemical Warfare Agents (CWA) in soil: Defence Research Facility, Suffield, Alberta.
 - Mercury in soil, groundwater, sediment and biota: Chlor-alkali plant, Squamish, BC.
 - Petroleum Hydrocarbons in sediment: Sawmill, Great Central Lake, Vancouver Island, BC.

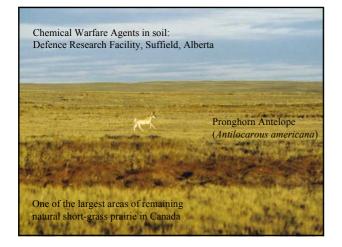

Cold











"Weight of Evidence" of Ecosystem Effects 1. Ecosystem Community Structure (e.g. diversity and abundance of invertebrates) 2. Soil/Sediment Chemical Characteristics (concentration, mobility and bioavailability) 3. Soil/Sediment Toxicity (Survival, Growth, Reproduction) 4. Bioaccumulation (tissue concentrations) 5. Soil/Sediment Physical Characteristics (grain size, organic matter)

C Call

The Site

- Canadian Forces Base (CFB) Suffield is located on 2600 km² of prairie landscape in south-eastern Alberta.
- The Research Facility was established in 1941 on 500 km²
- During World War II protection and decontamination were tested
- Following the war, Canada's production stocks of chemical agents were shipped to the Defence Research Facility for safe storage and eventual disposal.
- Trial and tests to develop protective equipment and defensive procedures continued after the war in response to continued threat of chemical warfare.

Destruction of Chemical Warfare Agents

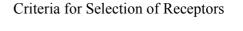
- 700 tons of mustard agent were chemically destroyed by hydrolysis in 1970s.
- Other disposal methods included chemical neutralisation, explosive detonation and open-pit incineration of hazardous items at sites on the EPG.
- The destruction program was completed from 1989 to 1991.
- Materials stored for disposal from the on-site disposal operations included:
 - metal fragments from explosive destruction operations;
 - sludge composed partly of mustard agent;
 - mustard agent or lewisite;
 - caustic methanol decontaminant solution used to neutralise organophosphorous nerve agents.

Ecological Risk Assessment and Remediation Goal

- An Environmental Baseline Study conducted in 1995 assessed approximately 80 locations used for the storage, testing or disposal of Chemical Warfare Agents.
- A preliminary assessment of the ecological risks concluded that 17 locations had high or medium risk of causing environmental impairment.
- Golder conducted a detailed ecological risk assessment of 7 of these locations in 1997, and the remaining 10 in 2002.
- The goal of the risk assessments was to determine the appropriate remediation actions.

Remediation Actions Considered

- · No Action: based on acceptable low potential for effects
- <u>Excavation and disposal</u>: where effects level were considered to unacceptable, and the soil was amenable to removal and treatment/disposal.
- <u>Partial excavation and containment:</u> excavation and consolidation of contaminated soil in an on-site containment facility
- <u>Surface capping:</u> considered as an alternative to excavation where dust and direct contact at surface were the main exposure pathways (as compared exposure to burrowing animals)
- <u>In-situ soil treatment:</u> considered where the effects were associated with high soil pH due to the use caustic methanol decontaminant solution to neutralise organophosphorous nerve agents.



Toxicity based Investigation

- · Toxicity-based to assess the risks and extent of remedial work.
- Geophysical techniques to screen for subsurface contamination or potential hazards.
- Indicator chemicals to screen for deleterious concentrations of CWA:
 - sulphur for mustard-related compounds;
 - metals including arsenic for lewisite;
 - phosphorous for nerve agent
- pH to indicate use of caustic methanol decontaminant solution
- Detailed chemical testing (metals, PAH, solvents) for trench or burn areas
- CWA analyses for samples suspected of being contaminated, based on indicator chemical testing, toxicity testing, site history and field observations

Health and Safety

- Access to test pits by Golder personnel was restricted until scanned for presence of chemical and/or biological warfare agents
- Personal protective equipment (PPE) included a full face respirator with organic vapour / acid gas / HEPA cartridges, chemical resistant Saranex TYCHEM®SL coveralls, outer Solknit NBR (Nitrite-Butyl-Rubber) gloves duct-taped to the suit with inner nitrile gloves, and steel-toed boots

- Guidance for selection of ecological receptors has been provided by the CCME (1996a). Criteria considered include:
 - importance to humans;
 - have economic or social value,
 - have intrinsic ecological significance, and
 - serve as a baseline from which the impacts can be measured.
- Receptors are also selected on the basis of which species are most likely to be affected by the potential contamination at the site.

Golder

Vulnerable, threatened or endangered species considered

Receptor Considerations

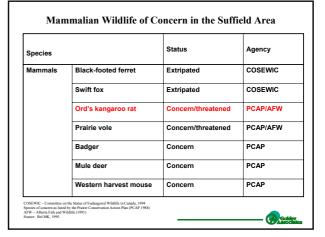
Soil-dependent organisms (e.g. plants, invertebrates and microbes) was selected because:

- They are most likely to be effected as the contamination is in the shallow soil.
- The Site is one of the largest areas of remaining natural short-grass prairie in Canada. Soil-dependent organisms are critical to the health of this short-grass prairie ecosystem.

Soil-Dependent Receptors

- Plants: The flora are comprised largely of native grasses and sedges that define a short prairie grassland (arid).
- Terrestrial Invertebrates: A healthy soil invertebrate community is important to the functioning of the prairie grass ecosystem, and comprises a significant dietary component for numerous other organisms.
- Soil Microorganisms: A healthy soil microorganism community is central to nutrient cycling and plant growth. A standard test species (Vibrio fischeri) a marine bacteria was used in the Microtox assay, to indicate the effect of soil contamination on microorganisms.

Sensitive Receptors Selected


Receptors selected based on Toxicity:

- Northern wheatgrass (Agropyron dasystachyum);
- Earthworm (*Eisenia foetida*); and
- Bacteria (Vibrio fischeri).

Receptors selected for bioaccumulative contaminants:

- Burrowing owl (Athene cunicularia);
- Pronghorn antelope (Antilocarous americana;
- Badger (Taxidea taxia); and
- Ord's kangaroo rat (Dipodomys ordii terrosus)

Golder

BIOASSAYS CONDUCTED AT THE EPG SITES

Receptor	Receptor Group	Test Species	Test Endpoint
Microbes	Bacteria	Vibrio fischeri	Luminescence
Plants	Grasses	Northern wheatgrass- Agropyron dasystachyum	Seedling emergence
Plants	Grasses	Northern wheatgrass- Agropyron dasystachyum	Root elongation and germination
Soil invertebrates	Earthworms	Eisenia foetida	Survival

Bacterial Luminescence	Seedling emergence	% of Control) Root elongation and germination	Earthworm Survival	Test Score
75-100	80-100	80-100	80-100	1
60-74	60-79	60-79	60-79	2
40-59	40-59	40-59	40-59	3
20-39	20-39	20-39	20-39	4
0-19	0-19	0-19	0-19	5

L

٦

RELATIVE WEIGHTING TESTS	
Bioassay	Test Weight
Bacterial Luminescence	20%
Seedling emergence	20%
Root elongation and germination	20%
Earthworm Survival	40%

Bioassay	Bacter Lumines		Root Elor	gation	Seedli Emerge		Earthw		Toxicity
Weight	20%		20%	Ď	20%		40%		Index
Sample ID	% Control	Score	% Control	Score	% Control	Score	% Control	Score	
Sample 1	106	1	78	2	79	2	75	2	1.8
Sample 2	98	1	55	3	42	2	62	2	2.0

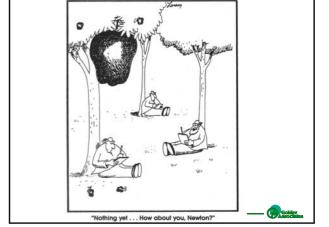
Bioassav	Bacte		Roc		Seed	ing	Earthw	orm	
	Lumines		Elonga		Emerg		Survi		Toxicity
Weight			20%		20%		40%		Index
	% Control	Score							
Sample ID									
Vertical Grid									
32100009-1	106	1	78	2	79	2	104	1	1.4
32200015-1	123	1	94	1	98	1	107	1	1
32300015-1	112	1	129	1	81	1	77	2	1.4
Willis Centre	Trench								
60100004-1	120	1	97	1	98	1	96	1	1
60100004-2	110	1	107	1	105	1	43	3	1.8
Chemical Mix	Dump								
58100003-1	100	1	81	1	77	2	111	1	1.2

BIOASSAY SCORING FOR THE 490 COMPOUND (DRES SITE 40) TARGET AREA 1

Bioassay	Bacte Lumines		Roc Elonga		Seed Emerg		Earthw Survi		Toxicity
Weight	20°	6	20%	6	20°	6	40%	6	Index
	% Control	Score	% Control	Score	% Control	Score	% Control	Score	
Sample ID									
40110004-1	39	4	131	1	4	5	0	5	4
40110005-1	34	4	166	1	0	5	7	5	4
Reference Inc	lex								2.2

Bioassay Scoring for the Cameron Decontamination Center

Bioassay	Lumines		Roc Elonga		Seedling Emergence		Earthworm Survival		
Weight	20%	6	20%	6	20%	6	40%	6	Index
	% Control	Score	% Control	Score	% Control	Score	% Control	Score	
Sample ID									
38200005-1	98	1	175	1	86	1	104	1	1
38210001-1	151	1	216	1	93	1	100	1	1
38210001-2	139	1	175	1	93	1	36	4	2.2
38210002-1	106	1	161	1	93	1	11	5	2.6
38210002-2	148	1	153	1	82	1	107	1	1
38210003-1	155	1	137	1	86	1	107	1	1
38210003-2	140	1	176	1	95	1	32	4	2.2
38210004-1	117	1	148	1	82	1	104	1	1
38210004-2	109	1	167	1	89	1	100	1	1
38210006-1	84	1	175	1	88	1	21	4	2.2
38210006-2	98	1	204	1	96	1	61	2	1.4
38210006-3	73	2	181	1	89	1	18	5	2.8
Reference Inc	lex								2.2



Case Studies - Use of biological tests

- 1. Chemical Warfare Agents in soil: Defence Research Facility, Suffield, Alberta, Canada:
 - Toxicity index for soil dependent receptors: Northern wheatgrass, Earthworm, and Bacteria.
 - Bioaccumulation considered for higher trophic levels: Burrowing owl, Pronghorn antelope, Badger; and Ord's kangaroo rat.
- Mercury in soil, groundwater, sediment and biota: Chlor-alkali plant, Squamish, BC.:
 - Measurement of tissue concentrations in biota at several trophic levels: plants, earthworms, shrews, moles, mussels, crab, several species of fish, birds.

Cold

- Petroleum Hydrocarbons in sediment: Sawmill, Great Central Lake, Vancouver Island, BC.:
 - · Toxicity tests of benthic invertbrates: chironomus and hyalella

