

Effects of Microplastics on the Environment and on Human Health

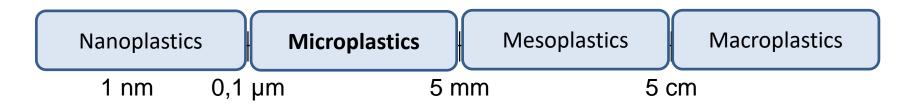
Agathe Bour

agathe.bour@bioenv.gu.se

Dr. Agathe Bour University of Gothenburg Department of Biological and Environmental Sciences Göteborg, Sweden

2016: 335 million tons

2016: > 60 million tons

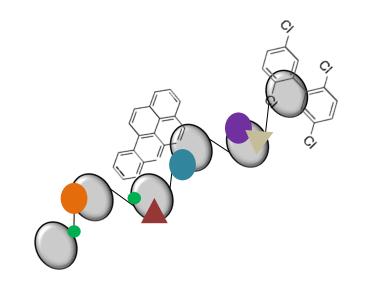

2016: 27 million tons (collected)

Non-collected waste → environmental release

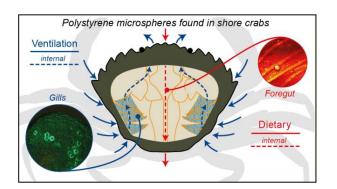
Estimations 2015:

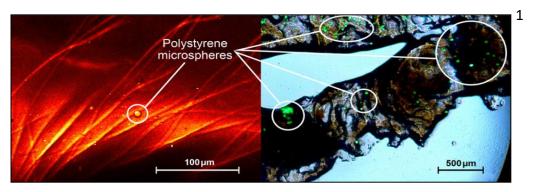
- ❖ 12.7 million tons entering the ocean
- ❖ > 5 billions of plastic items floating in the oceans

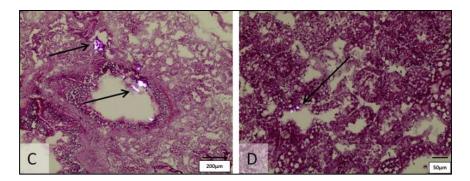
What are Microplastics?

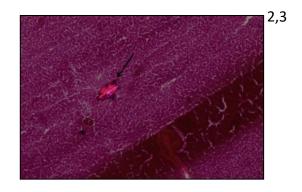


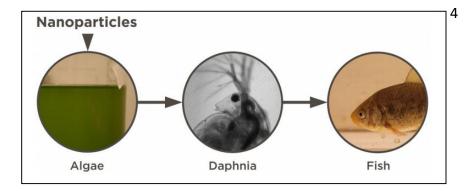
What are Microplastics?

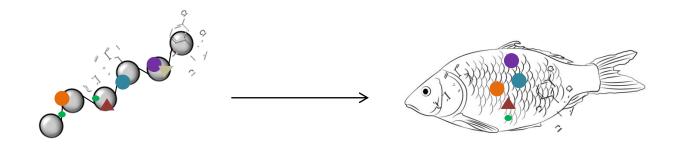

- Size, shape
- Polymer
- Catalysts
- Additives
- Non intentionally added substances
- (- Environmental contaminants)


Main sources:


- Personal hygiene products
- Industrial scrubbers
- Textiles
- Erosion of tires
- + Secondary MPs




Ingestion / uptake; trophic transfer


¹Watts et Al., 2014; Environ. Sci. Technol., 48, 8823–8830; doi: 10.1021/es501090e

²Avio et Al., 2015; Environ. Pollut. 198 211-222; doi: 10.1016/j.envpol.2014.12.021

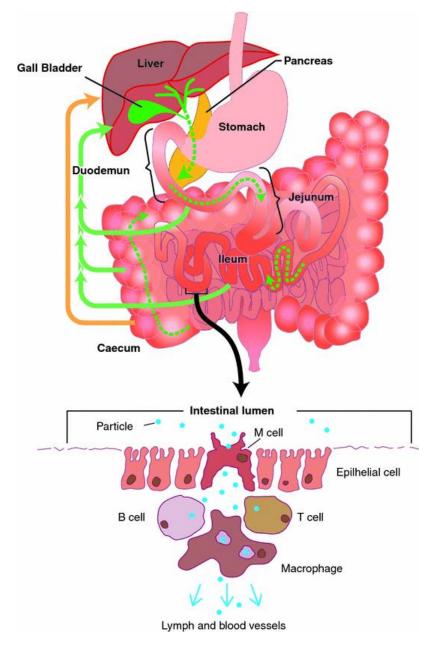
³Avio et Al., 2015; Mar. Environ. Res. 111, 18-26; doi: 10.1016/j.marenvres.2015.0 6.014

⁴Mattsson et al., 2017; Sci. Rep. 7; doi: 10.1038/s41598-017-10813-0

- ❖ Ingestion / uptake; trophic transfer
- Vector for contaminant transfer

→ MPs spiked with PCBs, PAHs, pyrene, pesticides → transfer

- Ingestion / uptake; trophic transfer
- Vector for contaminant transfer
- Main effects on aquatic species:
 - Gut damages
 - Nutrient uptake
 - Energy reserves, lipid metabolism; weight loss, general fitness
 - Growth and development
 - Reproduction
 - Immune system
 - Photosynthesis
 - Behavior


- Ingestion / uptake; trophic transfer
- Vector for contaminant transfer
- Main effects on aquatic species

- Publications showing no effect
- Lab conditions
- Data do not necessarily support work hypotheses

Microplastics – are we at risk?

- ➤ No MP quantification in human
- ➤ *In vitro* studies (<u>nano</u>plastics):
 - Inflammatory responses

Galloway, 2015; in: Marine Anthropogenic Litter. Springer, Cham, pp. 343–366. https://doi.org/10.1007/978-3-319-16510-3_13

Microplastics – are we at risk?

- No MP quantification in human
- ➤ In vitro studies (nanoplastics)
- ➤ Measurement of chemical concentrations in body fluids
 - → **NOT** specific to MPs
 - → Detects contact with plastics

Phthalates

BPA

Brominated flame retardants

Triclosan

Bisphenone

Organotins

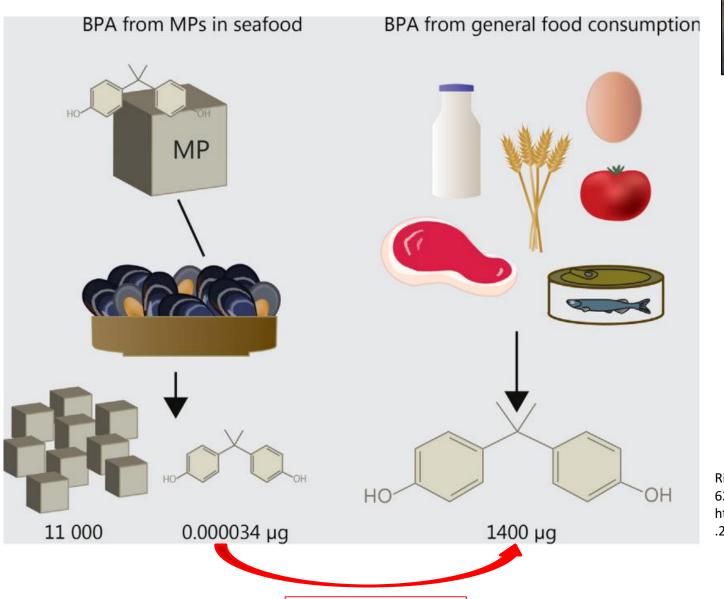
Adverse effects of plastic-associated chemicals:

- Cardiovascular diseases
- Reproduction and development outcomes
- Breast and prostate cancers
- Diabetes, obesity

- ...

Risk of transgenerational effects

<u>Microplastics – sources of exposure</u>



- → Atmospheric fallout: up to 335 fibers/m²/day (urban area)
 - \rightarrow Textile factory: 500 000 800 000 fibers/m³

MPs as vector for contaminant transfer

Rist et al., 2018; Sci. Total Environ. 626, 720–726. https://doi.org/10.1016/j.scitotenv.2018.01.092

~ x 40 millions

To wrap it up:

- ❖ MPs = complex contaminant
- MPs are found everywhere
- ❖ Data supporting harmful effects on various species...
- ❖ ... but not only!
- Various sources of exposure for humans
- ❖ For the moment, no data supporting strong toxicity
- ❖ Need to see the overall picture related to plastic consumption and use!