

NIRÁS	Treatable contaminants	
	 Chlorinated Ethenes 	
	 Oil products, BTEX 	
	Coal Tar	Data on much of this in
	Creosote	NIRAS' and Krügers booth up stairs!!
	 PAH's, Naphthalene 	
	PCB's	
	 Chlorobenzenes 	
	 Pentachlorophenol (Potential) 	CP)
	 Dioxins 	
	Mercury	
	 Many pesticides 	
	Mixtures	

NIRÁS	Important Heating Technologies - Summary					
Steam	SEE - heating governed by hydraulic conductivity – non- uniform steam flow					
Electrical	ERH - heating governed by electrical conductivity					
Conductive	ISTD/TCH - heating governed by thermal conductivity – nearly uniform distribution of heat					

NIRÁS	Skuldelev – Denmark							
	Full-scale design based on results from pilot test							
			COC's: PCE, chlorinated solvents (4000 kg)					
			Soil: Clay and sand Treatment depth: 7,5 meters Area: 250 m ²					
/								
	- A A	E RICH						
		1/	Volume: 1.600 m ³					
	Pilot test, Skuldelev		Estimated cost: 12 mio. dkr					
	ISTD-wells:	53						
	Vacuum wells:	21	Building					
	Water extraction wells:	3						
			ΠZ					
			Sheet piling					
			• ISTD-heater					
B Deglen	Hat		* Water extraction boring					
Hovedstaden	Monitoring well, Skuld	elev	· Vacuum boring					

	Physical processes/changes (below 120 °C)						
Component property	Oil based LNAPL	Chlorinated solvents	Creosote	Coal tar	РСВ	Comment	
Vapor pressure increase factor	20-40	20-40	20-40	20-40	20-40	Abundance of data in literature	
Solubility increase factor	2-100?	1.5-3	10-1000	10-1000	10-1000	Chlorinated solvent less affected than larger hydrocarbons	
Henry's constant increase factors		10-20	0-10	0-10	0-10	Data absent for most compounds, some decrease?	
Viscosity reduction factor	2 to 100+	1.3-3	5-10	20-100+	3-100	The higher initial viscosity, the more reduction	
Interfacial tension reduction factor	<2	<2	2-5	1-5	<5	Typically not dramatic effect (less than factor 2)	
Density reduction (%)	10-20	10-20	10-20	10-20	10-20	Note that DNAPL may become LNAPL	
K _d (reduction factor)	?	1-10	5-100	5-100	NA	Estimates based on limited data	
Udell (1989, 1991, 1993, 1996). Davis (1997, 1999). Imhoff et al. (1997). Sleep and Ma (1997). Heron et al. (1998, 2000).							

	Initial water content				
	100 %	80 %	10 %	0%	
Heating to 100 °C, wet	80	61	47	43	
Heating to 100 °C & evaporating all porewater	299	171	69	43	
Heating to 200 °C	347	219	117	91	

NIRÁS	Target temperatures					
	VOC	SVOC				
Above water table	90-100 °C (ERH, SEE, ISTD)	300 °C (ISTD) ▼				
Below water table	100-120 °C (ERH, SEE, ISTD)	100 -120 °C partial removal (ERH, SEE, ISTD low int.) 300 °C complete removal (ISTD, dewater)				
ERH: Electrical Resistivity Heating SEE: Steam Enhanced Extraction ISTD: In Situ Thermal Desorption						

NIRÁS	ISTD: PCB Field	TERRATHERM®			
	Location	Contaminant	Initial Max. Concentration (ppm)	Final Concentration (ppm)	
	S. Glens Falls, NY	PCB 1248/1254	5,000	< 0.8	
	Cape Girardeau, MO	PCB 1260	20,000	< 0.033	
	Vallejo, CA	PCB 1254/1260	2,200	< 0.033	
	Saipan, NMI	PCB 1254/1260	10,000	<1	
/	Ferndale, CA	PCB 1254	800	< 0.17	
	Source: Stegemeier and Vinegar (2001) Terratherm Inc.				

